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ABSTRACT
With the proliferation of flexible displays and the advances
in smart materials, it is now possible to create interactive de-
vices that are not only flexible but can reconfigure into any
shape on demand. Several Human Computer Interaction (HCI)
and robotics researchers have started designing, prototyping
and evaluating shape-changing devices, realising, however,
that this vision still requires many engineering challenges to
be addressed. On the material science front, we need break-
throughs in stable and accessible materials to create novel,
proof-of-concept devices. On the interactive devices side,
we require a deeper appreciation for the material properties
and an understanding of how exploiting material properties
can provide affordances that unleash the human interactive
potential. While these challenges are interesting for the re-
spective research fields, we believe that the true power of
shape-changing devices can be magnified by bringing together
these communities. In this paper we therefore present a review
of advances made in shape-changing materials and discuss
their applications within an HCI context.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces - Graphical user interfaces, Input devices and
strategies, Haptic I/O.

Author Keywords
Shape-changing interfaces; morphing structures; review;
material science.

INTRODUCTION
Current consumer devices, such as laptops, smartphones and
wearable devices, often have form factors that are determined
by their use of flat, planar display technology. In recent years,
the availability of thin-film flexible displays and smart mate-
rials has enabled HCI researchers to actively explore organic
[88], morphing [148, 198] and more expressive interactive
forms. From interactive spherical displays [16] to mobile

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 ACM. ISBN 978-1-4503-5620-6/18/04. . . $15.00

DOI: https://doi.org/10.1145/3173574.3173948

phones that bend to notify a user of an incoming call [75], and
to pneumatic interfaces that expand to become exoskeletons
or couches [202], there are many recent examples of shaped
interface design in the literature (see [191] for an overview).

From a design perspective, this transition from flat to shaped
interfaces is more complex than simply readjusting current
practices. The introduction of shape blends the boundary be-
tween interaction and industrial design [87], and requires a
next-generation designer to conceptualise interaction in an
object’s form. This change puts a greater need for HCI practi-
tioners to learn about and adapt the advances made in material
science and to quickly apply them towards shaped devices.

The maturation of 3D printing and its influence on prototyping
[152], and the emergence of thin-film displays and their rela-
tionship to bendable interfaces [110], are testament to the fact
that the advances in material science can have a direct impact
on HCI research. In this paper, we discuss how the evolving
relationship between HCI and material science can be framed,
and why synergies between the two fields are critical for the
design of shape-changing devices. As a first step, we con-
tribute a review of developments in shape-changing material
science to establish a baseline literacy and to make recent work
from material science available to the HCI community.

Within this review we make a systematic exploration of recent
developments in material science, focusing on the technologies
applicable to the context of shape-changing devices, including
stretchable structures, deployable systems, variable stiffness
materials and shape memory materials and discuss their po-
tential application for morphing interactive devices, with the
aim of building a bridge between material science and HCI.
Examples are provided from the broad HCI literature where
these technologies have already been implemented. Finally,
we discuss the challenges in bridging the gap and propose a
way forward. Our contribution is a road map for designers
who want to learn more about the advances in material science
and use them for the design of shape-changing interfaces.

REVIEW OF SHAPE-CHANGING MECHANISMS
In this section we present a review of the outputs from mate-
rial science that could enable morphing capabilities for shape-
changing devices. Thill et al. [236] present a review of shape-
changing concepts for aircraft morphing skins. This work is
comprehensive and highly cited in its field. We have therefore
used the shape-changing categories from this paper that we
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consider to be most applicable to HCI; namely stretchable
structures, deployable structures, variable stiffness materials
and shape memory materials. We then discuss how the dif-
ferent technologies within these categories could be applied
within the HCI community. Table 1 contains the key material
science references within this paper and summarises outputs
from HCI with respect to each shape-changing mechanism.

Several review papers have been published that define the dif-
ferent types of shape-change and their applications. Organic
User Interfaces (OUIs) describes how computer interfaces—
no longer limited to rigid flat surfaces—can exhibit shape,
deformation and non-planar forms [88]. Rasmussen et al.
[191] present a review of existing work on shape-changing
interfaces and identify eight different types of deformation.
Roudaut et al. [198] propose the term shape-resolution that
extends the definition of display resolution to shape-changing
interfaces. It is based on the model of Non-Uniform Rational
B-splines (NURBS) and has ten features to characterise shape-
change mathematically. Coelho et al. [40] adopted a more
technology driven approach with their taxonomy describing
the technological properties of shape-changing devices. Ex-
amples include power requirements, the ability to memorise
new shapes and input stimulus, such as voltage potential, or
the ability to sense deformations. In this paper, rather than
focusing on shape-change from an HCI perspective, we review
current state-of-the-art morphing technologies that have been
developed to meet desirable shape-change within engineer-
ing industries (e.g. aerospace). We also discuss how these
technologies may be harnessed by HCI researchers for the
development of shape-changing interactive devices.

Stretchable Structures
Stretchable structures are the basis of shape-changing devices
that require large changes in surface area and rely on a mate-
rial/structure that is compliant enough to allow for large-scale
deformation. In this section, two classes of stretchable struc-
tures are discussed: elastomers and auxetic materials.

Elastomers
Elastomers, such as silicone, are a type of polymer that have
historically been used in seals and adhesives, gloves, tyres, toy
balloons, rubber bands, in shock absorbers and in moulded
flexible parts. These materials are typically safe in their end
form, widely available and are relatively easily manipulated
by the user. Their main advantage is their low elastic modulus
(i.e. the resistance of a material to being stretched, also known
as Young’s Modulus) which enables them to easily deform (i.e.
strain) up to 1000% of their original length [32, 236], resulting
in large achievable changes in topology. Due to their weak
intermolecular structure, elastomers can stretch easily without
large forces and return to their original shape when the force
is removed, thus exhibiting a shape-memory effect [107].

Depending on their molecular structure, elastomers fall into
one of two categories: thermoset (such as silicone rubber)
or thermoplastic. Whilst thermoset elastomers are typically
stronger, thermoplastics are melt-processable and easily recy-
cled, lending themselves to manufacturing processes such as
3D printing [223]. The properties of these materials display
non-linear behaviour, meaning that different shape-changing

responses may be achieved depending on how quickly the
material is stretched and on the surrounding temperature [27],
indicating the need for tightly controlled user conditions to
ensure repeatability and minimal degradation of the material.
The glass transition temperature (Tg) is a particularly impor-
tant characteristic of polymers and is the temperature region
at which a polymer transitions from a brittle, glassy state to a
soft, rubbery state [27]. Elastomers, therefore, must be used at
a temperature well above their Tg point in order to exhibit the
desired characteristics for shape-change.

In recent years, elastomers have been developed for new appli-
cations including artificial muscles [6, 176], soft robotics [141,
216, 242, 246] and stretchable electronics [111, 112, 212, 213].
Silicone has frequently been used in the development of pneu-
matically actuated soft robots due its durability and the ability
to fabricate internal chambers that can be inflated and deflated
to enable specific deformation patterns from a single pressure
source [98, 142, 151]. Advances in stretchable electronics
have been reviewed in [197], and the authors suggested that
these technologies show promising potential for several HCI
applications including sensory skins for robotics, structural
health monitors and wearable communication devices.

Elastomers within HCI

Although many instances of stretchable structures within the
HCI community have been reported using fabrics [146, 173,
195, 199], few studies have employed elastomers alone. Poly-
dimethylsiloxane (PDMS), a silicone-based organic polymer,
served as the base material of iSkin [247] and Stretchis [248]
and enabled the development of stretchable user interfaces for
sensing and display. A significant drawback of elastomers,
particularly for shape-change, is the trade-off between stretcha-
bility and strength. Typically, a material that is able to undergo
large increases in surface area has low strength (therefore not
particularly robust) and vice versa [221], which has likely pre-
vented their use in larger scale prototypes by HCI researchers
without being coupled with another component. However, elas-
tomeric polymers show particular promise for achieving high
resolution shape-change due to their highly deformable nature.
Some of these materials are costly and require complex knowl-
edge of polymer processing (which has potentially been an in-
hibitor in their adoption in shape-changing research). Nonethe-
less, many are still easily accessible to HCI researchers and
do not require any specific skills or equipment other than the
ability to mix together two components in a specified ratio.

Auxetic Materials
Auxetics are materials that exhibit a negative Poisson’s ratio
(v); in other words, they become wider when stretched and
narrower when compressed. Their performance relies on the
spatial arrangement of their internal architecture rather than
their material composition. The internal structure of these
materials typically consists of an arrangement of connected
hinge-like cells that have a re-entrant geometry (i.e. the angles
of the honeycomb cells point inwards), causing the sides to ex-
pand outwards when stretched (Figure 1) [31, 236]. Typically,
auxetic structures are anisotropic (i.e. different properties in
different directions), undergoing different expansion rates de-
pending on the axis stretched, however, this deformation is



Category Shape-Changing Mechanism Material Science References HCI References

Stretchable
Structures

[6], [27], [32], [44], [46], [98], [111], [112], [141],
[142], [151], [174], [175], [174], [176], [197], [212],

[213], [216], [221], [223], [242], [246]
iSkin [247], Stretchis [248], [128]

[2], [3], [12], [22], [29], [30], [36], [57], [58], [59],
[60], [78], [118], [149], [153], [181], [192], [201],

[203], [204], [205], [206], [207], [208], [260], [261]

Beyond Developable [119], Choreographic Architecture [235],
[99], [100]

Deployable
Structures

[7], [34], [35], [97], [103], [133], [143], [211], [226],
[229], [239], [252] Xpaaand [110], [154], [224]

[44], [46], [49], [51], [52], [54], [62], [66], [72], [80],
[83], [85], [89], [96], [127], [139], [142], [150], [158],
[159], [161], [167], [177], [190], [193], [209], [217],

[218], [219], [228], [230], [241], [251], [259]

Awakened Apparel [179], Boxelization [267], Enfold [137], Foldio [166],
FoldMe [109], Morphees [198], Origami Tessellation Display [116],

PaperFold [76], Tessella [33], [70], [129], [136]

[23], [24], [25], [26], [28], [69], [81], [98], [115],
[140], [142], [151], [160], [196], [200], [210], [220],

[233], [245], [246]

AeroFinger [63], aeroMorph [170], Inflashoe [11], Inflatable
Mouse [114], PneuHaptic [84], PneUI [262], Pneumatibles [74],

Printflatables [202], Squeezeback [182], [56], [82], [225], [243], [263]

Variable
Stiffness
Materials

[4], [17], [18], [19], [41], [47], [48], [71], [77], [86],
[104], [106], [117], [121], [130], [164], [175], [174],
[194], [214], [232], [237], [238], [240], [265], [266]

Frozen Suit [1], Jamming User Interfaces [67], jamSheets [171]

[8], [20], [21], [37], [42], [43], [44], [45], [46], [50],
[64], [68], [113], [125], [135], [144], [145], [163],

[183], [184], [189], [193], [215], [217], [244]

Shape
Memory
Materials

[5], [13], [15], [43], [61], [62], [83], [91], [92], [93],
[94], [95], [102], [107], [113], [131], [132], [134],

[138], [157], [158], [177], [188], [205], [222], [227],
[231], [241], [253], [254], [255], [256], [257], [258]

Bendi [172], Enfold [137], Hairlytop Interface [162], Luminescent
Tentacles [156], MimicTile [155], MorePhone [75], Morphees [198],

Move-it [185], Sprout I/O [39], Surflex [38], [168], [187]

Table 1: Categories of shape-change and corresponding material science and HCI literature.

independent of their length scale [149]. Although many stud-
ies have investigated auxetic properties in 2D, this behaviour
can also be observed in 3D using a similar topology [58, 260].

Auxetic materials have been synthesised as foams [29, 30, 204,
207], ceramics [126], composites [36, 60], crystals [12, 79,
264] and polymers [3, 22, 181, 192], with re-entrant honey-
comb cellular structures being the most extensively researched
to date [149, 206, 208, 261]. The hexagonal lattice shown in
Figure 1 is perhaps the simplest form of an auxetic cellular
arrangement, however, other tessellating geometries, such as
chiral [2] and rotating unit [78, 90], are also capable of creat-
ing an auxetic shape-changing mechanism. Further attempts
have been made to develop smart auxetic structures from shape
memory alloys (SMAs), in order to introduce some multifunc-
tional capability such as actuated shape-change [205].

Figure 1: (a) Honeycomb cellular structure (v > 0), (b)
re-entrant honeycomb cellular structure displaying auxetic

behaviour (v < 0), when pulled in the y direction [59] (© 2000
image reproduced with permission from Wiley).

An interesting characteristic of auxetics for shape-change is
that these structures display synclastic curvature when bent. In
other words, unlike non-auxetic structures which form a saddle
shape when bent (Figure 2a), auxetic materials form a dome-
shape devoid of any crimps (Figure 2b), making them suitable
for designing and building structures with complex curvatures
and shapes [57, 203]. In [119] the authors exploited this
characteristic to physically realise complex surfaces such as
shoes, sculptures, face masks and clothing via auxetic linkages
by introducing cuts into the material so that the elements
formed could rotate relative to each other in an auxetic manner.

Auxetic Materials within HCI

Auxetic materials display many advantageous properties, par-
ticularly for shape-changing applications, such as the ability
to achieve large changes in surface area, a high resistance to
fracture (i.e. robustness) and high energy absorption [78, 261].
However, their widespread use has largely been limited by the
complex procedures to generate these materials using tradi-
tional manufacturing methods. With recent advances in 3D
printing, the potential exists to more readily fabricate cellular
designs to introduce shape-changing functionality, particularly
in the case of 3D re-entrant structures [118, 149, 153, 260].
For example, Theodoros et al. [235] 3D printed an auxetic
structure that could be pneumatically actuated to achieve a
change in curvature, and in [99] the authors 3D printed a meta-
material door latch from a single block of NinjaFlex (a flexible
TPU filament) that enabled rotary movement of the handle to
be transformed into linear motion of the latch. Although the
modelling of the precise deformation of these structures may
be complex, the lack of awareness of auxetics as a means for



shape-change is likely to be the main reason for the scarcity in
HCI literature. Yet, with the developments in 3D printing and
extensive literature detailing auxetic designs, these structures
are now more accessible to the HCI community as there is no
longer a need for expensive equipment or materials. Auxetic
materials therefore show promising potential for shape-change,
particularly when a degree of curvature is required.

(a) (b)

Figure 2: (a) Anticlastic (saddle-shape) curvature (v > 0), (b)
synclastic (dome-shape) curvature (v < 0) [201] (© 2014 image

reproduced with permission from Elsevier).

Deployable Structures
Deployable shape-changing mechanisms enable structures and
devices to be stowed for transport or easy handling and ex-
panded when required. In the case of shape-changing devices
this may also enable a change in function of the device depend-
ing on the current configuration. In this section, three classes
of deployable shape-changing mechanisms are discussed: rol-
lable, foldable and inflatable.

Rollable Structures
Examples of rollable mechanisms found in everyday use in-
clude roller blinds, garage shutters and for efficient storage
of fabrics and other flexible materials. A large proportion of
research on rollable structures to date has focused on space
applications [239], most notably for in-space deployment of
lightweight solar sails with minimal packing volume during
launch. Rollable carbon-fibre reinforced polymer (CFRP)
booms were developed by DLR for an Earth-orbiting Solar
Power Satellite (SPS) [211] that consisted of two laminated
sheets in an Ω-shape bonded together to form a tubular struc-
ture. Flattening this shape made it easier to bend in one di-
rection, enabling the booms to be coiled for storage [226].
Araromi et al. [7] created a microsatellite gripper that utilises a
pre-stretched, rollable dielectric elastomer membrane bonded
to a flexible but inextensible frame that remains rolled-up until
the pre-stretch is released during deployment. Another ad-
vantage of rolled, deployable devices, such as a carpenter’s
tape, is that they can automatically uncoil and then snap into a
stable uncoiled configuration that is load-bearing [180].

An exciting prospect for rollable structures is in the develop-
ment of flexible electronics, with advances in thin, flexible
display technology enabling the concept of rollable displays to
be explored [143]. This is perhaps the application of rollable
structures that has been of most interest within HCI to date.
Several studies have focused on developing the technology,
including [34, 97, 143, 229, 252]. Typically metal foils, ultra-
thin glasses and plastic films are considered ideal materials for

the flexible substrate, with rollable polymer films showing par-
ticular promise due to their flexibility, low cost and excellent
optical clarity, in addition to being amenable to a wide range
of manufacturing processes such as roll-to-roll processing and
inkjet printing [103]. However, they tend to suffer from a high
coefficient of thermal expansion (CTE), i.e. there is a large
change in the material size with changes in temperature, which
can make integration with display layers a challenge [35].

Rollable Structures within HCI

Several studies investigate the user interaction with rollable
devices and explore the physical modes of interaction [110,
154, 224]. However, the authors all noted that despite recent
developments in flexible displays, the components required to
realise such devices are still unavailable and the focus of their
studies landed primarily on the interaction with the rolling
mechanisms rather than the display technology itself. Further-
more, the flexible nature of the inorganic thin films used in
electronic devices tends to promote brittle failure [133], high-
lighting that the challenges in utilising rolling structures for
shape-changing interfaces lie not only with HCI researchers,
but also with material scientists and the need for further devel-
opments in the materials technology.

Foldable Structures
The high strength-to-weight ratio of folded objects enables the
development of thin, lightweight, hollow, shape-changeable
geometries that can be easily deployed into 3D and flattened
into 2D for storage and transport [166]. In recent years, engi-
neers have looked to the ancient Japanese tradition of origami
to inspire the evolution of engineering structures that can be
fabricated, assembled, stored and morphed in unique ways [72,
177]. The applications of foldable structures are widespread
and have been implemented in an array of practical scenarios
including in the design and deployment of solar sails [211] and
space telescopes [55, 249], in sandwich panel cores [66, 85],
in the folding of sheet metal [53], in packaging and containers
[52, 251], in robotics [62, 89, 127, 167], biomedical devices
[65, 122, 190] and electronics [80, 96, 161, 218, 228, 259].

In origami mathematics, a fold is regarded as an ideal surface
having zero-thickness where any deformation of the surface
does not result in stretching, contraction or self-intersection.
The location of these folds are known as creases and they, in
addition to the direction, magnitude and sequences of folding,
determine the shape of the structure [49, 177]. When imple-
menting origami to create physical structures, the surface no
longer maintains zero-thickness and the magnitude of a fold is
described by the folding angle and the radius of curvature at
the fold line. To generate these folds, one of two approaches
must be taken; local bending of the material or the use of a
hinge. The latter concept is referred to as rigid origami, where
the facets and crease lines are replaced with panels and hinges,
and is particularly relevant for large shape-changing structures
that require a high degree of stiffness [230].

For certain applications, such as in remote locations, at very
small or large length scales, or where packaging is complex
and requires automation, the capability of these structures to
self-fold becomes essential. The active folding of structures



has been reported using shape memory materials [241], poly-
mer swelling [101] and magnetic fields [62], and an extensive
review of self-folding mechanisms for both hinge and bending
type folds using active materials are reported in [177]. For
example, in [83] the authors developed a self-folding sheet
consisting of triangular tiles of glass-fibre impregnated with
resin, that uses SMAs attached to the upper and lower surfaces
to enable actuation. To address the issue of sheet thickness, an
elastomer is used for the joints and a series of magnets enable
folding into any polyhedral shape (Figure 3). Felton et al. [62]
presented self-folding shape-memory composites made from
two outer layers of prestretched polystyrene (a shape-memory
polymer (SMP)), two layers of paper and a printed circuit
board (PCB) made from polyimide and copper. When heated,
the SMP contracts causing the composite to fold. SMPs have
also been used to create a number of different self-folding
composite shapes; from boxes to Miura-ori patterns [241].

Figure 3: Flat sheet prior to folding (A). Four-actuator group
controlling flaps activated (B). Magnets for the first fold

engaged (C). Remaining actuators are activated (D). Final
shape (E) and inverted (F) [83] (reproduced by permission of

the Proceedings of the National Academy of Science of the
United States of America, PNAS).

The folding and unfolding of structures becomes increasingly
complex with increasing number of folds due to the expanding
number of folded possibilities [139]. A well-known example
of origami folding that was initially created to efficiently pack
and deploy solar panels for space missions is the Miura-ori
tessellated folding pattern [150]. This herringbone pattern con-
sists of a series of convex mountain and concave valley creases
that enables the entire structure to be folded or unfolded si-
multaneously, avoiding the complexity of folding sequences
[219]. Schenk et al. [209] formed folded cellular structures by
stacking individual Miura-ori sheets that were bonded along
the joining fold lines, in which the folding kinematics were
preserved. By varying the unit cell geometry within each layer,
the authors developed a self-locking, folded cellular structure,
where the motion could be halted in a predetermined configu-
ration. Adopting this idea into shape-changing devices may
enable its mechanical functionality to be altered on demand.

In addition to folding, kirigami also permits cutting to ob-
tain 3D shapes from 2D sheets, enabling not only changes in
shape, but also large changes in volume with highly tailorable
properties in each axis [159]. Neville et al. [159] detailed the
manufacturing process of honeycomb kirigami structures that

involves a sequence of cutting, corrugating and folding. Al-
though they used Polyetheretherketone (PEEK) to demonstrate
their design, the authors suggested that this method could be
applied to any material, provided that it can be cut and folded.
They showed that a series of threaded cables was a simple
method of deforming the structure (Figure 4), but smart ma-
terials such as SMPs could also be used for actuation [158].
Dias et al. [51] also demonstrated that mechanical actuators
can be designed that enable roll, pitch, yaw and lift, by tuning
the arrangement and location of cuts within thin elastic sheets.

Figure 4: Kirigami honeycomb changing shape in response to
cable tension (arrows indicate pulling direction) [159] (© 2016

image licensed under CC BY 4.0).

Foldable Structures within HCI

Many instances of origami folding can be found within HCI,
such as within fashion and textiles to create shape-changing
skirts [179] and jackets [137], and in the development of in-
teractive objects [33]. Origami mechanisms have also been
used to create interactive folding displays [76, 109, 129] and
input devices [70, 116]. For example, Olberding et al. [166]
introduced Foldio, a fabrication technique for Foldable Inter-
active Objects, i.e. folded sheets of paper, plastic or cardboard,
that can sense user input such as touch and deformation, and
display output and actuated shape change through printed elec-
tronics. They demonstrated this technology through a series
of applications including interactive packaging and furnishing,
paper prototyping, custom-shape input and output devices,
such as a game controller, and a shape-changing display.

The broad literature available shows that foldable structures
are not a new concept in HCI, particularly with regards to
origami-inspired devices. The basics of folding are easy to
implement, reproducible and the shape-changing mechanism
can be achieved with almost any compliant material. However,
they require an external structure to guide them into shape and
as a result, the speed and maximum displacement of the shape-
change is highly linked to the actuation method [177]. Another
limitation is that these structures are considered membrane
materials, i.e. to enable better foldability, a high bending stiff-
ness must be avoided, leading to a compromise in structural
performance (strength and stiffness) as the structures can only



take load in tension and not in compression [53, 54]. Such
trade-offs are likely to impact the characteristics of the device,
but we expect to see more innovative solutions as we move
towards higher fidelity developments and gain an improved
understanding of the kinematics of folding. By cutting as well
as folding (kirigami), it may be possible to create devices that
can achieve large changes in volume as well as surface area.

Inflatable Structures
An inflatable is a structure that can be inflated with gas, nor-
mally air, helium, hydrogen or nitrogen. Their popularity is
largely due to their low weight and ability to pack into small
volumes, conforming to almost any shape that can be deployed
when required. Other advantages include their low production
cost, high strength due to the large surface area over which they
are able to absorb loads, and high reliability of deployment
[28]. As a result, they have found their way into many applica-
tions including vehicle wheels, furniture, inflatable boats and
buoyancy systems [81], airbags [23, 233], membrane roofs
[9, 105, 165], soft robotics [151, 160, 196, 245, 246], medical
treatments [10, 14, 147, 234] and for entertainment.

Extensive research has also been conducted in the use of inflat-
ables for space-based devices [69]. For example, small UAVs
that can be tightly packed for ease of transportation or launch-
ing and that have significant robustness to withstand impact on
landing, are of interest for military operations. This includes
vehicles that are inflated on site and hand-launched, those
which are gun-launched and inflate in flight, and ejectable
(one-time use) or retractable (reusable) systems [25]. Schenk
et al. [210] highlighted that efficient packing schemes are
necessary to ensure reliable deployment of inflatables.

The choice of material for an inflatable largely depends on the
application. Everyday balloons tend to be made from latex
rubber, polychloroprene or nylon, due to their low cost and
ease of manufacture, and have often been adopted by HCI
researchers in prototype development. Inflatable structures
for space tend to consist of a combination of more costly,
high strength-to-weight, durable fabrics such as Kevlar® and
Vectran™ (a high-strength, liquid crystal polymer) with a poly-
imide (Kapton®) or polyurethane membrane material that acts
as a sealant [220]. Car airbags are typically formed from thin
woven nylon or polyester fabric [108], while polyethylene is
often found in cushioning and packaging. Silicone has also
been widely used in medicine [123] and in soft robotics for
artificial muscles [115, 140]. Ultimately, the strength and
stiffness of the inflatable structure is controlled by the internal
pressure and the elastic modulus of the restraint material [26].

Inflation pressure provides structural rigidity by placing ten-
sion in the walls of the structure. Therefore, to maintain the
inflated shape, the internal pressure must equal or exceed any
external pressure that is applied to the structure. The larger the
structure, the lower the inflation pressure that is generally re-
quired. After a period of time, the inflation gas will inevitably
escape through imperfections in the inflatable skin that may
have occurred through manufacture, folding or deployment,
reducing the overall shape and stiffness. Furthermore, inflated
structures that lack reinforcement are more susceptible to punc-
ture [210]. As a result, the concept of rigidisable materials,

i.e. “materials that are initially flexible to facilitate inflation
or deployment and become rigid when exposed to an external
influence”, has been introduced by Cadogan et al. [24], with
an extensive review of the different methods given in [210].

Inflatable Structures within HCI

An advantage of inflatable structures within HCI research is
that they can be deflated, partially inflated or fully inflated,
enabling a wide range of stiffness properties or actuation forces
to be achieved. This has attracted computer scientists in recent
years to adopt these structures for wearable technologies and
to provide interactive haptic feedback to users. Examples
include interactive shoes that adapt to different surfaces or
to the user’s foot morphology [11], therapeutic cushions that
can adjust according to the user [263], and in inflatable pads
fitted to car steering wheels that can pulsate and alert drivers
to potential problems without utilising their vision or auditory
senses that may already be fully engaged [56].

Inflatable materials have also found their way into interactive
input and display devices including an inflatable mouse [114],
inflatable buttons and controls [82, 243], and in an inflatable
multi-touch display surface that could dynamically deform
from a flat, circular display to a convex or concave, hemispher-
ical display according to the context of the user’s task [225].
This highlights that inflatable structures for shape-change have
already been well adopted within HCI as, for example, bal-
loons are very easy to obtain at low cost and require little to
no expertise or equipment. However, challenges often exist
in ensuring reliable and predictable deployment and sufficient
structural robustness after deployment, potentially limiting
their use in more demanding environments [200, 210]. By
incorporating more robust materials or combining membrane
materials with durable fabrics, in a similar manner to the
aerospace or automotive industries, prototype development
may be accelerated closer towards its end-use.

Variable Stiffness Materials
In this section, we discuss how shape-change can be achieved
by designing a structure so that the stiffness properties vary in
different directions, focusing on two mechanisms in particular:
anisotropy and multi-stability.

Anisotropic Structures
Anisotropy, as opposed to isotropy, refers to the directional
dependance of material properties. By designing an object
such that the stiffness varies along different axes, it can be
deformed in a direction with minimum actuation force [236].
The tailoring of stiffness is not a new idea. Bone, for example,
has different elastic properties in two orthogonally opposed
directions (known as orthotropic); parallel to and normal to
the long axis of the structure [19]. Wood is an orthotropic
structure as it has different properties in three perpendicular
directions; axial, radial, and circumferential, due to its grain-
like structure [77]. In contrast, metals and glass are isotropic
and have the same macroscale properties in all directions.

Examples of stiffness tailoring for shape-change can largely
be found in the development of morphing technology for air-
craft [121, 237], such as bend-twist coupling of beams for gust



alleviation [71], and in wind turbine blades [47, 124]. In fibre-
reinforced composites, anisotropy is introduced through the
distribution of material through-thickness and through fibre
orientation [121]. By reducing stiffness in the chord direction
and increasing in the span direction, researchers have aimed
to create morphing aircraft skins that have sufficient stiffness
to withstand aerodynamic loads, yet are flexible enough for
actuation [238]. For example, Peel et al. [175] developed a
manufacturing process for fibre-reinforced elastomeric com-
posites using an elastomer matrix, such as urethane or silicone,
with glass fibre reinforcement, and showed notable variation
in the resulting elastic modulus in different directions [174].

Although in material science, anisotropy is typically linked to
the material’s microstructure, it may also be introduced via its
structure, such as through corrugation, which is perhaps more
accessible to HCI research than high cost composites. Corru-
gated structures have long been found in the packaging indus-
try (e.g. cardboard) [4, 17, 18], in civil infrastructures (e.g.
in roofs, walls and pipes), [104, 240], in aerospace structures
(e.g. the Junkers Ju-52 of the 1930’s) [106, 232, 265, 266]
and in sandwich panels for marine and aerospace applications
[48, 86, 117, 194]. This is due to their high strength-to-weight
ratio, energy absorption capabilities and anisotropic behaviour,
which can be attributed to the high degree of stiffness trans-
verse to the corrugation direction, in comparison to along the
corrugation direction. By specifying the dimensions and ma-
terials of both the face sheets and corrugated core, a range of
structural characteristics for morphing can be achieved [266].
For example, Norman et al. [164] explored the use of curved
corrugated shells for structural morphing and determined that,
although there is a loss in membrane (i.e. in-plane) stiffness,
the sheets are capable of large changes in Gaussian curvature
(Figure 5). Bi-directional cores have also been developed to
modify the stiffness in both directions [130, 214].

Figure 5: Curved corrugation structure: (a) initial shape, (b)
material expands as curvature increases, (c) the structure can
be deformed inextensibly to a positive Gaussian curvature or

(d) negative Gaussian curvature [164] (© 2009 image
reproduced with permission from Elsevier).

Anisotropic Structures within HCI

The concept of material anisotropy for shape-change has been
investigated to some extent by HCI researchers by using parti-
cle jamming to achieve variable stiffness properties, such as

in [1, 67], where the authors focused on alternating between
soft and hard deformability. However, Ou et al. [171] showed
that it was also possible to introduce anisotropic deformation
using jamming through the structural design of the jammable
materials, such as by weaving multiple jamming units into the
material, using interleaving flaps in the elastic air bladder, or
by introducing crease patterns or cutting geometrical patterns
into the jamming flaps [169]. They envisioned that by incor-
porating more complex weaving patterns or increasing the
resolution, it may be possible to program more sophisticated
deformation interactions such as the direction of stretching,
degree of rolling, bending angle and shear deformation.

The developments in 3D printing have also made shape-change
via anisotropy more accessible. Due to the layer-by-layer de-
position, 3D printing is inherently anisotropic, resulting in
objects that are much stronger in the horizontal printing di-
rection than the vertical direction [186]. Typically, this is an
unwanted characteristic, particularly for brittle materials, how-
ever, this has enabled the printing of hydrogel architectures
with localised, anisotropic swelling behaviour that can result
in complex, three-dimensional shape-change when immersed
in water [73]. As in the case of auxetics, 3D printing has
also encouraged cellular materials to be designed that can ex-
hibit different deformation characteristics in different axis [41].
One of the main challenges in implementing anisotropy is that
this type of shape-change, such as that exhibited in morphing
aircraft wings and wind turbine blades, tends to be very subtle
and may not be suitable for achieving large, nonlinear changes
in shape that can be accomplished using deployable structures,
elastomers and multi-stable structures [236].

Multi-stable Structures
Multi-stable structures undergo large, rapid deformations be-
tween multiple stable mechanical shapes. The Venus flytrap
is a well-known bi-stable structure that snaps from an open
to closed state when small hairs on the plant are triggered
by potential prey [68]. Another example is the slap bracelet
that consists of layered, flexible, bistable spring bands sealed
within a fabric, silicone or plastic cover. By straightening out
the bracelet, tension is applied to the springs which is released
when slapped against the wearer’s arm, causing the bands to
spring back and wrap around the wrist [120]. Self-retracting
tape measures also undergo large rapid deformations between
different states. During manufacture, a concavo-convex cross-
section is introduced through heat treatment that gives the tape
longitudinal structural rigidity when deployed and enables
rapid retraction when bent [180]. Harnessing such character-
istics may enable HCI researchers to achieve rapid actuation
between multiple device shapes.

Extensive research into multi-stability has been conducted
within composite materials [50, 125, 144, 145, 183, 184]. The
snap-through phenomenon occurs when a structure is forced
to transition from one equilibrium, which is stable under small
perturbations, to another (usually by an external force), by
transitioning through a region of instability. This region of
instability, or negative stiffness, means that significant defor-
mation is required to move between the two stable states and
explains why bistability is so attractive for morphing applica-



tions [8, 45]. The snapping of thin composite laminates occurs
due to residual stresses that are generated during the cure cycle
of an asymmetric lay-up (due to a mismatch in CTE of the
constituent layers) or as a result of initial curvature. The trista-
bility of composite shells has also been reported in [37, 244].
Typically, only low actuation forces are required to generate
large deformations in multi-stable composites. Various actua-
tion mechanisms to provide this ‘snap-through’ shape-change
for morphing applications have been investigated, including
piezoelectric ceramic-based actuators [20], shape memory al-
loys [43, 113] and thermal patches [135], and a comparison
between them was made in [21]. A passively adaptive struc-
ture that does not rely on external mechanisms for actuation
was also reported in [8]. In [163] the authors developed multi-
stable corrugated panels from a Copper-Beryllium alloy and
suggested that these structures could potentially be used as a
mount for flexible displays or deployable electronic devices.

Shan et al. [215] demonstrated the accessibility of fabricating
bistable structures by 3D printing multi-stable, architected ma-
terials. When compressed, the internal beam elements move
into another stable state but with higher energy, exhibiting
local, bistable deformation. The beams can then return to
their initial configuration when a sufficient reverse force is ap-
plied, enabling multiple changes in shape. In [189] the authors
created a bistable metamaterial that moves through several
metastable states via snap-through buckling when stretched,
until it reaches full extension, achieving strains of up to 150%.

Multi-stability has also be combined with deployable shape-
change such as folding. The Buckliball [217] is a good exam-
ple of this and is a continuum silicone shell structure developed
by Shim et al. that undergoes a structural transformation when
the internal pressure is reduced. A pattern of circular voids
exists on the shell so that when the internal pressure falls be-
low a critical value, the narrow pieces of material between the
voids collapse inwards causing buckling of the ball. In [193]
the author discusses in more detail how buckling of slender
structures can be exploited to develop functional mechanisms
for smart morphable surfaces. As another example, Daynes
et al. [44] developed a bistable, elastomeric origami mor-
phing structure, made from silicone, with locally reinforced
regions of acrylonitrile butadiene styrene (ABS). The structure
could deploy from a flat to textured arrangement (Figure 6),
under pneumatic actuation, and maintain its shape without sus-
tained actuation. They highlighted that this cellular structure
is a lightweight, inexpensive method of creating an actuating,
shape-changing mechanism due to the low cost of materials
and the use of 3D printing to fabricate the mould. However,
the authors noted that the more compliant the structure is, the
less able it is to support high external forces [46].

Multi-stable Structures within HCI

In HCI we are used to computers reacting at a fast rate but in
shape-changing interfaces this requirement is more difficult to
fulfil as some shape-changing mechanisms, such as SMAs and
SMPs, have slow actuation times that may affect the user expe-
rience [231, 255]. In contrast, bistable materials typically have
actuation times of a few milliseconds [21]. Although multi-
stability is normally associated with composite materials, we

have shown that this type of shape-change can be exploited
using simple and inexpensive materials and methods. The
main challenge of implementing multi-stability within HCI is
that these structures are typically binary, i.e. they are limited
to two stable shape configurations (bistable), and the shape-
change is challenging to control [42]. As multi-stability is a
non-linear phenomenon, it is often not intuitive how additional
stable configurations can be achieved by tailoring the underly-
ing mechanics. Furthermore, the greater the number of stable
configurations, the harder it is to control the actuation dynam-
ics due to possible nonlinear interactions between modes [64].
Consideration must also be made as to how these structures
will be actuated. Nonetheless, multi-stability may provide a
mechanism to achieve rapid actuation and shape-change that
has not previously been reported within HCI literature.

Figure 6: Bistable silicone origami structure in a (a) deployed
state and (b) retracted state [46] (© IOP Publishing.
Reproduced with permission. All rights reserved).

Shape Memory Materials
Shape memory materials are a class of material that exhibit
a shape memory effect (SME) due to their ability to change
stiffness as a result of an externally applied stimuli. Here
we discuss the two most common forms of shape memory
materials: shape memory alloys (SMAs) and shape memory
polymers (SMPs).

Shape Memory Alloys
The shape-changing mechanism behind SMAs is based on a re-
versible martensitic transformation. When the SMA is cooled
it undergoes a martensitic transformation from its austenite
phase to its twinned martensite phase, at which point the ma-
terial is malleable and may be reconfigured into the desired
shape (a deformed temporary martensite phase). When heated
above the austenite finish temperature the material undergoes a
reversible martensitic transformation, returning to its original,
rigid shape in the austenite phase. This is known as a one-way
SME. It is also worth noting that SMAs exhibit a temperature
hysteresis (Figure 7). In other words, the temperature required
for the martensite to austenite transformation is higher than
for the austenite to martensite transformation [236].

Materials with a two-way SME are able to remember their
shape at both low and high temperatures and switch between
them. To achieve this, the material must be subjected to re-
peated one-way SME cycles [134]. These training require-
ments, in addition to the limits in maximum recoverable strain



and the tendency of the shape recovery to deteriorate at high
temperature over time, means that one-way SMEs are gener-
ally favourable due to their greater reliability [227]. A third
characteristic of SMAs is pseudoelasticity. This means that
the SMA can transform between the austenite and martensite
phase without a change in temperature when a mechanical
force is applied [102].

To date, SMAs have been developed into many shapes includ-
ing solid (such as wires), film and even foam. Commercially
available SMAs are typically based on one of three alloys:
NiTi-based (Nitinol), Cu-based and Fe-based, the choice de-
pending on the application. For example, NiTi SMAs exhibit
very high performance, are highly reliable and have frequently
been implemented in the development of HCI prototypes. Fe-
based alloys have excellent biocompatibility and are often
found in biomedical applications. Cu-based alloys are low cost
but relatively weak and are generally only used for one-time
actuation [227]. All these materials are thermo-responsive,
therefore relying on heat to trigger the SME, however, re-
cent advances have also been made in developing magneto-
responsive SMAs based on ferromagnetic materials [94].

Figure 7: Thermo-mechanical response of shape memory alloys
(at 4% working strain); Ms and Mf represent the martensite

start and finish temperatures, As and Af are the austenite start
and finish temperatures [157] (© 2010 image reproduced with

permission from Elsevier).

Shape Memory Alloys within HCI

The most useful applications of SMAs within HCI are as an
actuating mechanism for shape-change. SMAs have several
advantages over motors, pneumatics and hydraulic systems
such as low cost, reduced size and complexity, their ability to
react directly to environmental stimuli such as temperature,
their biocompatibility and low weight [157]. Furthermore, they
are capable of actuating in 3D, thereby enabling the evolution
of structures and devices that can extend, bend and twist [102].
They have also been widely adopted within HCI prototypes.
For example, SMAs have been used to animate paper [185,
187], to create novel, deformable user interfaces and displays
[75, 155, 172, 198] and in the development of shape-changing
and texturally-rich surfaces [38, 39, 168].

Although SMAs have been widely used within HCI research,
they are not suitable for every application. They have a rel-
atively small usable strain and are not easy to control. They
have a low actuation frequency, low accuracy, are not very en-
ergy efficient and have a demanding training regime [102]. In
addition, rapid heating of SMAs is challenging and although
this can be achieved by Joule heating (i.e. applying an electri-
cal current), care has to be taken not to overheat and damage
the elements or harm the user [61, 188]. Furthermore, the
cooling process is also slow, highlighting the relatively slow
actuation response time of SMAs, which is also influenced by
the size and shape of the SMA (i.e. larger and thicker SMAs
take longer to heat and cool) [5, 231]. This is likely to have a
significant impact on the user experience and it may be neces-
sary to look to alternative mechanisms, such as multi-stability,
to achieve rapid actuation between different shape states.

Shape Memory Polymers
SMPs also exhibit an SME and have several advantages over
SMAs. They are lighter, lower in cost (both in the raw material
and processing), easier to process into almost any shape and
their material properties can be more readily manipulated [256,
257]. Furthermore, SMPs have a greater recoverable strain
(up to 1100%) than SMAs and the shape memory process can
be triggered by a wide range of stimuli including UV [131],
moisture [258], heat [138] or several stimuli combined [95].

The SME observed in SMPs is largely due to their molecular
structure and the processing and programming conditions. Ex-
amples include segmented polyurethane, styrene-based poly-
mers and crosslinked polyethylene [92]. These polymers un-
dergo a transformation to a more deformable state when heated
above their transition temperature, which may be its Tg (see
elastomers) or its melting temperature. On cooling, the poly-
mer hardens into the deformed shape and maintains this shape
even when the force is removed. If the polymer is heated
back above its transition temperature, it will undergo a shape
memory recovery process and return to its programmed shape
[236]. This is unlike SMAs where the stiffness is reduced
when the temperature is lowered. Due to the wide shape re-
covery temperature range of SMPs, it is possible to have more
than one memorised shape, achieved either by triggering dif-
ferent stimuli or through multiple transitions within different
temperature ranges [13, 15, 254]. In depth reviews into the
developments of SMPs can be found in [91, 92, 138].

Shape Memory Polymers within HCI

Both within the HCI and materials communities, SMAs have
been more widely utilised than SMPs for actuating shape-
change. The lack of understanding in the behaviour of SMPs,
particularly regarding their long-term use, means that few are
commercially available and as a result, they have not been
widely implemented [227]. Like SMAs, the actuation re-
sponse of these materials is relatively slow [255]. However,
the field has seen recent growth and researchers have begun
investigating their potential use in a wide variety of applica-
tions including self-tightening sutures [132], biodegradable
stents [250], surface patterning (e.g. braille) [93], morphing
wings [107, 178], deployable structures [222] and self-healing
materials [253], due to their highly tailorable structure.



BRIDGING THE GAP
As seen in Table 1, some shape-changing technologies have
been more widely adopted within HCI than others. For exam-
ple, foldable and inflatable structures and SMAs have been
used in a variety of applications, ranging from interactive
displays and input/output devices to clothes and furniture.
However, little research has been conducted using rollable and
multi-stable structures to enact shape-change within HCI. We
argue that this can be attributed to two key factors: (1) a lack of
awareness and understanding of shape-changing technologies
and their material characteristics by HCI researchers, and (2)
a lack of availability of equipment, materials and lab space for
HCI researchers to support their work. SMAs, for example,
are readily available online and require limited expertise. In
contrast, the complex mathematics behind auxetic materials
can make their fabrication challenging. Multi-stability and
anisotropy have not been widely adopted within HCI, poten-
tially due to an absence in appreciation of these mechanisms
and the methods required to implement them. These are also
relatively new fields in material science and work is still re-
quired by the materials community to mature the technology.

Although material science, like HCI, is multi-disciplinary and
benefits from collaboration between physicists, chemists and
engineers, the approaches to research also have some key
differences. For example, manufacturability is a key consid-
eration in the design and development phases in material sci-
ence and projects often go through many development cycles
(years, or even decades) before they are physically realised. In
contrast, HCI researchers often develop proof of concept pro-
totypes in much shorter time frames, with attention being paid
to the expressivity and ease of appropriation of the technology.
This difference in requirements and approach to research is
perhaps another key factor in the gap between these two fields.

The choice of shape-changing mechanism is also largely de-
pendant on factors such as performance (e.g. strength and
robustness), power consumption, actuation capabilities (e.g.
maximum displacement and speed) and shape-change resolu-
tion (e.g. granularity, curvature, strength and speed), and this
review highlights that the different technologies vary in each
of these criteria. Stretchable and deployable structures tend
to be limited to applications that do not require significant
strength or robustness, however, they are able to achieve a
higher number of shape configurations and larger changes in
area and/or volume. Variable stiffness materials are capable of
more robust shape-change that can be used for more demand-
ing applications, however, the number of shape configurations
and degree of shape-change tends to be limited.

Actuation speed and power consumption also differ between
each of the technologies. For example, SMAs have a slow
response time, are only capable of providing a low actuation
force and require a high power consumption, however, many
shape configurations can be achieved. In contrast, multi-stable
structures deform at a rapid rate and require little force to do so,
however, they are limited in the number of stable mechanical
shapes they can morph into. Each of these criteria are essential
to both material science and HCI applications, highlighting
how these fields can benefit from working together.

To improve the synergy between these two fields and to foster
future collaboration, we propose the following way forward:

• The creation of a language and/or common syntax between
the fields to address the gap in understanding terminologies
and methods. This paper provides a starting point for ad-
dressing this issue by defining material properties that HCI
researchers may be unfamiliar with.

• The creation of online platforms where researchers within
HCI can express what is needed in terms of hardware man-
ufacturing, as well as share current developments. As a first
step in this direction we placed the content of this paper at
www.morphui.com and will update it regularly.

• The creation of software design tools to increase the acces-
sibility of material outputs that do not require an in depth
understanding of the science behind such developments.
Ideally this would enable HCI researchers to have a platform
which provides them with an awareness of the behaviour
and characteristics of these materials/mechanisms.

• The creation of hardware design tools to enable the use of
printers, Fab Labs etc., for reproducing material science
outputs in a more accessible manner.

The capabilities of layering and arranging material, brought
on by the additive manufacturing (3D printing) revolution,
has sparked interest in compliant, shape-adaptive and multi-
functional systems in both HCI and material science. The
first-hand experience of writing this review suggests that the
HCI community may benefit from a broader awareness of
state-of-the-art material systems, whereas the material science
community has little experience in embedding information
processing, i.e. "intelligence", into structures. Perhaps, the
greatest means of fostering synergies between these two fields
is taking the leap and interacting with colleagues across disci-
pline boundaries just for curiosity’s sake.

CONCLUSION
With the aim of accelerating the design of shape-changing de-
vices, we have provided a review of the advances in material
science from an HCI perspective. We see this approach as
a road map for next generation designers that want to better
understand material science and adopt shape-changing mech-
anisms in their work. We also believe that creating OUIs
requires a redefinition of the tools we use during the design
process. The tools needed for shaped-interface design need
to be more expressive, like the raw and versatile materials an
industrial designer might use to create complex geometries. A
change like this can happen if HCI practitioners are attentive
to shape-change developments from a material science per-
spective. This work is a step in this direction as it bridges a
gap between material science, HCI and shape-change.
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119. M. Konaković, K. Crane, B. Deng, S. Bouaziz, D. Piker,
and M. Pauly. 2016. Beyond developable:
computational design and fabrication with auxetic
materials. ACM Transactions on Graphics 35, 4, Article
89 (July 2016), 11 pages. DOI:
http://dx.doi.org/10.1145/2897824.2925944

120. F. A. Kramer. 1993. The activation energy of a slap
bracelet. Journal of Chemical Education 70, 12 (1993),
1002. DOI:http://dx.doi.org/10.1021/ed070p1002

121. I. K. Kuder, A. F. Arrieta, W. E. Raither, and P. Ermanni.
2013. Variable stiffness material and structural concepts
for morphing applications. Progress in Aerospace
Sciences 63 (2013), 33–55. DOI:
http://dx.doi.org/10.1016/j.paerosci.2013.07.001

122. K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M.
Umemoto, T. Ito, and M. Sasaki. 2006. Self-deployable
origami stent grafts as a biomedical application of
Ni-rich TiNi shape memory alloy foil. Materials Science
and Engineering: A 419, 1 (2006), 131–137. DOI:
http://dx.doi.org/10.1016/j.msea.2005.12.016

123. L. I. Kuzmak, I. S. Yap, L. McGuire, J. S. Dixon, and
M. P. Young. 1990. Surgery for morbid obesity: using
an inflatable gastric band. AORN Journal 51, 5 (1990),
1307–1324. DOI:
http://dx.doi.org/10.1016/S0001-2092(07)70154-0

124. X. Lachenal, S. Daynes, and P. M. Weaver. 2013.
Review of morphing concepts and materials for wind
turbine blade applications. Wind Energy 16, 2 (2013),
283–307. DOI:http://dx.doi.org/10.1002/we.531

http://dx.doi.org/10.1016/j.compscitech.2008.11.035
http://dx.doi.org/10.1117/12.600569
http://dx.doi.org/10.1002/(SICI)1097-4628(19960627)60:13<2329::AID-APP4>3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1097-4628(19960627)60:13<2329::AID-APP4>3.0.CO;2-G
http://dx.doi.org/10.1145/2148131.2148142
http://dx.doi.org/10.1145/1978942.1979344
http://www.jstor.org/stable/20055091
http://dx.doi.org/10.1073/pnas.0807476105
http://dx.doi.org/10.2514/1.J050100
http://dx.doi.org/10.1145/1357054.1357090
http://dx.doi.org/10.1016/j.tibtech.2013.03.002
http://dx.doi.org/10.1145/2559206.2581172
http://dx.doi.org/10.1016/S0951-8339(98)40651-8
http://dx.doi.org/10.1039/C6RA27333E
http://dx.doi.org/10.1145/2897824.2925944
http://dx.doi.org/10.1021/ed070p1002
http://dx.doi.org/10.1016/j.paerosci.2013.07.001
http://dx.doi.org/10.1016/j.msea.2005.12.016
http://dx.doi.org/10.1016/S0001-2092(07)70154-0
http://dx.doi.org/10.1002/we.531


125. X. Lachenal, P. M. Weaver, and S. Daynes. 2012.
Multi-stable composite twisting structure for morphing
applications. Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering
Sciences 468 (2012), 1230–1251. Issue 2141. DOI:
http://dx.doi.org/10.1098/rspa.2011.0631

126. H. Ledbetter and M. Lei. 1991. Monocrystal elastic
constants of orthotropic Y1Ba2Cu3O7: an estimate.
Journal of Materials Research 6, 11 (1991), 2253–2255.
DOI:http://dx.doi.org/10.1557/JMR.1991.2253

127. D.-Y. Lee, J.-S. Kim, S.-R. Kim, J.-S. Koh, and K.-J.
Cho. 2013. The deformable wheel robot using
magic-ball origami structure. In Proceedings of the
ASME 2013 International Design Engineering Technical
Conferences and Computers and Information in
Engineering Conference (IDETC/CIE 2013). The
American Society of Mechanical Engineers, 1–9. DOI:
http://dx.doi.org/10.1115/DETC2013-13016

128. H. Lee, K. Park, Y. Kim, and J. Kim. 2017. Durable and
repairable soft tactile skin for physical human robot
interaction. In Proceedings of the Companion of the
2017 ACM/IEEE International Conference on
Human-Robot Interaction (HRI ’17). ACM, New York,
NY, USA, 183–184. DOI:
http://dx.doi.org/10.1145/3029798.3038417

129. J. C. Lee, S. E. Hudson, and E. Tse. 2008. Foldable
interactive displays. In Proceedings of the 21st Annual
ACM Symposium on User Interface Software and
Technology (UIST ’08). ACM, New York, NY, USA,
287–290. DOI:
http://dx.doi.org/10.1145/1449715.1449763

130. M. Leekitwattana, S.W. Boyd, and R.A. Shenoi. 2011.
Evaluation of the transverse shear stiffness of a steel
bi-directional corrugated-strip-core sandwich beam.
Journal of Constructional Steel Research 67, 2 (2011),
248–254. DOI:
http://dx.doi.org/10.1016/j.jcsr.2010.07.010

131. A. Lendlein, H. Jiang, O. Junger, and R. Langer. 2005.
Light-induced shape-memory polymers. Nature 434
(2005), 879–882. DOI:
http://dx.doi.org/10.1038/nature03496

132. A. Lendlein and R. Langer. 2002. Biodegradable, elastic
shape-memory polymers for potential biomedical
applications. Science 296, 5573 (2002), 1673–1676.
DOI:http://dx.doi.org/10.1126/science.1066102

133. J. Lewis. 2006. Material challenge for flexible organic
devices. Materials Today 9, 4 (2006), 38–45. DOI:
http://dx.doi.org/10.1016/S1369-7021(06)71446-8

134. C. Lexcellent, S. Leclercq, B. Gabry, and G. Bourbon.
2000. The two way shape memory effect of shape
memory alloys: an experimental study and a
phenomenological model. International Journal of
Plasticity 16, 10 (2000), 1155–1168. DOI:
http://dx.doi.org/10.1016/S0749-6419(00)00005-X

135. H. Li, F. Dai, and S. Du. 2012. Numerical and
experimental study on morphing bi-stable composite
laminates actuated by a heating method. Composites
Science and Technology 72, 14 (2012), 1767–1773. DOI:
http://dx.doi.org/10.1016/j.compscitech.2012.07.015

136. H. Li, R. Hu, I. Alhashim, and H. Zhang. 2015.
Foldabilizing furniture. ACM Transactions on Graphics
34, 4, Article 90 (July 2015), 12 pages. DOI:
http://dx.doi.org/10.1145/2766912

137. J. Lin, J. Zhou, and H. Koo. 2015. Enfold: Clothing for
people with cerebral palsy. In Adjunct Proceedings of
the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings
of the 2015 ACM International Symposium on Wearable
Computers (UbiComp/ISWC’15 Adjunct). ACM, New
York, NY, USA, 563–566. DOI:
http://dx.doi.org/10.1145/2800835.2801671

138. C. Liu, H. Qin, and P. T. Mather. 2007. Review of
progress in shape-memory polymers. Journal of
Materials Chemistry 17 (2007), 1543–1558. Issue 16.
DOI:http://dx.doi.org/10.1039/B615954K

139. L. Mahadevan and S. Rica. 2005. Self-organized
origami. Science 307, 5716 (2005), 1740. DOI:
http://dx.doi.org/10.1126/science.1105169

140. C. Majidi. 2013. Soft robotics: A perspective—current
trends and prospects for the future. Soft Robotics 1, 1
(2013), 5–11. DOI:
http://dx.doi.org/10.1089/soro.2013.0001

141. A. D Marchese, C. D. Onal, and D. Rus. 2014.
Autonomous soft robotic fish capable of escape
maneuvers using fluidic elastomer actuators. Soft
Robotics 1, 1 (2014), 75–87. DOI:
http://dx.doi.org/10.1089/soro.2013.0009

142. R. V. Martinez, C. R. Fish, X. Chen, and G. M.
Whitesides. 2012. Elastomeric origami: programmable
paper-elastomer composites as pneumatic actuators.
Advanced Functional Materials 22, 7 (2012),
1376–1384. DOI:
http://dx.doi.org/10.1002/adfm.201102978

143. M. Mativenga, D. Geng, B. Kim, and J. Jang. 2015.
Fully transparent and rollable electronics. ACS Applied
Materials & Interfaces 7, 3 (2015), 1578–1585. DOI:
http://dx.doi.org/10.1021/am506937s

144. F. Mattioni, P. M. Weaver, and M. I. Friswell. 2009.
Multistable composite plates with piecewise variation of
lay-up in the planform. International Journal of Solids
and Structures 46, 1 (2009), 151–164. DOI:
http://dx.doi.org/10.1016/j.ijsolstr.2008.08.023

145. F. Mattioni, P. M. Weaver, K. D. Potter, and M. I.
Friswell. 2008. Analysis of thermally induced
multistable composites. International Journal of Solids
and Structures 45, 2 (2008), 657–675. DOI:
http://dx.doi.org/10.1016/j.ijsolstr.2007.08.031

http://dx.doi.org/10.1098/rspa.2011.0631
http://dx.doi.org/10.1557/JMR.1991.2253
http://dx.doi.org/10.1115/DETC2013-13016
http://dx.doi.org/10.1145/3029798.3038417
http://dx.doi.org/10.1145/1449715.1449763
http://dx.doi.org/10.1016/j.jcsr.2010.07.010
http://dx.doi.org/10.1038/nature03496
http://dx.doi.org/10.1126/science.1066102
http://dx.doi.org/10.1016/S1369-7021(06)71446-8
http://dx.doi.org/10.1016/S0749-6419(00)00005-X
http://dx.doi.org/10.1016/j.compscitech.2012.07.015
http://dx.doi.org/10.1145/2766912
http://dx.doi.org/10.1145/2800835.2801671
http://dx.doi.org/10.1039/B615954K
http://dx.doi.org/10.1126/science.1105169
http://dx.doi.org/10.1089/soro.2013.0001
http://dx.doi.org/10.1089/soro.2013.0009
http://dx.doi.org/10.1002/adfm.201102978
http://dx.doi.org/10.1021/am506937s
http://dx.doi.org/10.1016/j.ijsolstr.2008.08.023
http://dx.doi.org/10.1016/j.ijsolstr.2007.08.031


146. A. Mehmann, M. Varga, K. Gönner, and G. Tröster.
2015. A ball-grid-array-like electronics-to-textile pocket
connector for wearable electronics. In Proceedings of
the 2015 ACM International Symposium on Wearable
Computers (ISWC ’15). ACM, New York, NY, USA,
57–60. DOI:
http://dx.doi.org/10.1145/2802083.2802093

147. J. Mikaeli, F. Bishehsari, G. Montazeri, M. Yaghoobi,
and R. Malekzadeh. 2004. Pneumatic balloon dilatation
in achalasia: a prospective comparison of safety and
efficacy with different balloon diameters. Alimentary
Pharmacology & Therapeutics 20, 4 (2004), 431–436.
DOI:
http://dx.doi.org/10.1111/j.1365-2036.2004.02080.x

148. A. Minuto, D. Vyas, W. Poelman, and A. Nijholt. 2012.
Smart material interfaces: a vision. In Proceedings of
the 4th International ICST Conference on Intelligent
Technologies for Interactive Entertainment (INTETAIN
2011), A. Camurri and C. Costa (Eds.). Springer, Berlin,
Heidelberg, 57–62. DOI:
http://dx.doi.org/10.1007/978-3-642-30214-5_7

149. M. Mir, M. N. Ali, J. Sami, and U. Ansari. 2014.
Review of mechanics and applications of auxetic
structures. Advances in Materials Science and
Engineering 2014 (2014), 1–17. DOI:
http://dx.doi.org/10.1155/2014/753496

150. K. Miura. 1985. Method of packaging and deployment
of large membranes in space. 618 (1985), 1–9. https:
//repository.exst.jaxa.jp/dspace/handle/a-is/7293

151. B. Mosadegh, P. Polygerinos, C. Keplinger, S.
Wennstedt, R. F. Shepherd, U. Gupta, J. Shim, K.
Bertoldi, C. J. Walsh, and G. M. Whitesides. 2014.
Pneumatic networks for soft robotics that actuate rapidly.
Advanced Functional Materials 24, 15 (2014),
2163–2170. DOI:
http://dx.doi.org/10.1002/adfm.201303288

152. S. Mueller. 2017. 3D printing for human-computer
interaction. interactions 24, 5 (2017), 76–79. DOI:
http://dx.doi.org/10.1145/3125399

153. R. Naboni and L. Mirante. 2015. Metamaterial
computation and fabrication of auxetic patterns for
architecture. Blucher Design Proceedings 2, 3 (2015),
129–136. DOI:
http://dx.doi.org/10.5151/despro-sigradi2015-30268

154. S. Nagaraju. 2013. Novel user interaction styles with
flexible/rollable screens. In Proceedings of the Biannual
Conference of the Italian Chapter of SIGCHI (CHItaly
’13). ACM, New York, NY, USA, Article 20, 7 pages.
DOI:http://dx.doi.org/10.1145/2499149.2499152

155. Y. Nakagawa, A. Kamimura, and Y. Kawaguchi. 2012.
MimicTile: a variable stiffness deformable user interface
for mobile devices. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’12). ACM, New York, NY, USA, 745–748. DOI:
http://dx.doi.org/10.1145/2207676.2207782

156. A. Nakayasu. 2016. Luminescent tentacles: a scalable
SMA motion display. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology
(UIST ’16 Adjunct). ACM, New York, NY, USA, 33–34.
DOI:http://dx.doi.org/10.1145/2984751.2985695

157. A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S.
Viscuso. 2010. The high potential of shape memory
alloys in developing miniature mechanical devices: a
review on shape memory alloy mini-actuators. Sensors
and Actuators A: Physical 158, 1 (2010), 149–160. DOI:
http://dx.doi.org/10.1016/j.sna.2009.12.020

158. R. M. Neville, J. Chen, X. Guo, F. Zhang, W. Wang, Y.
Dobah, F. Scarpa, J. Leng, and H.-X. Peng. 2017. A
Kirigami shape memory polymer honeycomb concept
for deployment. Smart Materials and Structures 26, 5
(2017), 05LT03.
http://stacks.iop.org/0964-1726/26/i=5/a=05LT03

159. R. M. Neville, F. Scarpa, and A. Pirrera. 2016. Shape
morphing Kirigami mechanical metamaterials. Scientific
Reports 6, 31067 (05 Aug. 2016), 1–12.
http://dx.doi.org/10.1038/srep31067

160. R. Niiyama, D. Rus, and S. Kim. 2014. Pouch motors:
printable/inflatable soft actuators for robotics. In
Proceedings of the 2014 IEEE International Conference
on Robotics and Automation (ICRA). 6332–6337. DOI:
http://dx.doi.org/10.1109/ICRA.2014.6907793

161. M. Nogi, N. Komoda, K. Otsuka, and K. Suganuma.
2013. Foldable nanopaper antennas for origami
electronics. Nanoscale 5 (2013), 4395–4399. Issue 10.
DOI:http://dx.doi.org/10.1039/C3NR00231D

162. T. Nojima, Y. Ooide, and H. Kawaguchi. 2013.
Hairlytop interface: an interactive surface display
comprised of hair-like soft actuators. In Proceedings of
the 13th World Haptics Conference (WHC). 431–435.
DOI:http://dx.doi.org/10.1109/WHC.2013.6548447

163. A. D Norman, K. A Seffen, and S. D Guest. 2008.
Multistable corrugated shells. Proceedings of the Royal
Society of London A: Mathematical, Physical and
Engineering Sciences 464, 2095 (2008), 1653–1672.
DOI:http://dx.doi.org/10.1098/rspa.2007.0216

164. A. D. Norman, K. A. Seffen, and S. D. Guest. 2009.
Morphing of curved corrugated shells. International
Journal of Solids and Structures 46, 7 (2009),
1624–1633. DOI:
http://dx.doi.org/10.1016/j.ijsolstr.2008.12.009

165. M. Ohno. 2010. Structural design of the Japan pavilion
in Shanghai Expo. IABSE Symposium Report:
International Association for Bridge and Structural
Engineering 97, 4 (2010), 69–74. DOI:
http://dx.doi.org/10.2749/222137810796064057

166. S. Olberding, S. Soto Ortega, K. Hildebrandt, and J.
Steimle. 2015. Foldio: digital fabrication of interactive
and shape-changing objects with foldable printed
electronics. In Proceedings of the 28th Annual ACM

http://dx.doi.org/10.1145/2802083.2802093
http://dx.doi.org/10.1111/j.1365-2036.2004.02080.x
http://dx.doi.org/10.1007/978-3-642-30214-5_7
http://dx.doi.org/10.1155/2014/753496
https://repository.exst.jaxa.jp/dspace/handle/a-is/7293
https://repository.exst.jaxa.jp/dspace/handle/a-is/7293
http://dx.doi.org/10.1002/adfm.201303288
http://dx.doi.org/10.1145/3125399
http://dx.doi.org/10.5151/despro-sigradi2015-30268
http://dx.doi.org/10.1145/2499149.2499152
http://dx.doi.org/10.1145/2207676.2207782
http://dx.doi.org/10.1145/2984751.2985695
http://dx.doi.org/10.1016/j.sna.2009.12.020
http://stacks.iop.org/0964-1726/26/i=5/a=05LT03
http://dx.doi.org/10.1038/srep31067
http://dx.doi.org/10.1109/ICRA.2014.6907793
http://dx.doi.org/10.1039/C3NR00231D
http://dx.doi.org/10.1109/WHC.2013.6548447
http://dx.doi.org/10.1098/rspa.2007.0216
http://dx.doi.org/10.1016/j.ijsolstr.2008.12.009
http://dx.doi.org/10.2749/222137810796064057


Symposium on User Interface Software & Technology
(UIST ’15). ACM, New York, NY, USA, 223–232. DOI:
http://dx.doi.org/10.1145/2807442.2807494

167. C. D. Onal, R. J. Wood, and D. Rus. 2013. An
origami-inspired approach to worm robots. IEEE/ASME
Transactions on Mechatronics 18, 2 (2013), 430–438.
DOI:http://dx.doi.org/10.1109/TMECH.2012.2210239

168. Y. Ooide, H. Kawaguchi, and T. Nojima. 2013. An
assembly of soft actuators for an organic user interface.
In Proceedings of the Adjunct Publication of the 26th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’13 Adjunct). ACM, New York,
NY, USA, 87–88. DOI:
http://dx.doi.org/10.1145/2508468.2514723

169. J. Ou. 2014. Material transformation: Designing shape
changing interfaces enabled by programmable material
anisotropy. Master’s thesis. Massachusetts Institute of
Technology.

170. J. Ou, M. Skouras, N. Vlavianos, F. Heibeck, C.-Y.
Cheng, J. Peters, and H. Ishii. 2016. aeroMorph -
heat-sealing inflatable shape-change materials for
interaction design. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology
(UIST ’16). ACM, New York, NY, USA, 121–132. DOI:
http://dx.doi.org/10.1145/2984511.2984520

171. J. Ou, L. Yao, D. Tauber, J. Steimle, R. Niiyama, and H.
Ishii. 2013. jamSheets: thin interfaces with tunable
stiffness enabled by layer jamming. In Proceedings of
the 8th International Conference on Tangible,
Embedded and Embodied Interaction (TEI ’14). ACM,
New York, NY, USA, 65–72. DOI:
http://dx.doi.org/10.1145/2540930.2540971

172. Y.-W. Park, J. Park, and T.-J. Nam. 2015. The trial of
Bendi in a coffeehouse: use of a shape-changing device
for a tactile-visual phone conversation. In Proceedings
of the 33rd Annual ACM Conference on Human Factors
in Computing Systems (CHI ’15). ACM, New York, NY,
USA, 2181–2190. DOI:
http://dx.doi.org/10.1145/2702123.2702326

173. P. Parzer, K. Probst, T. Babic, C. Rendl, A. Vogl, A.
Olwal, and M. Haller. 2016. FlexTiles: a flexible,
stretchable, formable, pressure-sensitive, tactile input
sensor. In Proceedings of the 2016 CHI Conference
Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’16). ACM, New York, NY, USA,
3754–3757. DOI:
http://dx.doi.org/10.1145/2851581.2890253

174. L. D. Peel and D. W. Jensen. 2001. The response of
fiber-reinforced elastomers under simple tension.
Journal of Composite Materials 35, 2 (2001), 96–137.
DOI:http://dx.doi.org/10.1106/V3YU-JR4G-MKJG-3VMF

175. L. D. Peel, D. W. Jensen, and K. Suzumori. 1998. Batch
fabrication of fiber-reinforced elastomer prepreg.
Journal of Advanced Materials 30, 3 (1998), 3–10.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.85.324&rep=rep1&type=pdf

176. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph. 2000.
High-speed electrically actuated elastomers with strain
greater than 100%. Science 287, 5454 (2000), 836–839.
DOI:http://dx.doi.org/10.1126/science.287.5454.836

177. E. A. Peraza-Hernandez, D. J. Hartl, R. J. Malak Jr, and
D. C. Lagoudas. 2014. Origami-inspired active
structures: a synthesis and review. Smart Materials and
Structures 23, 9 (2014), 094001.
http://stacks.iop.org/0964-1726/23/i=9/a=094001

178. D. Perkins, J. Reed, and E. Havens. 2004. Morphing
wing structures for loitering air vehicles. In Proceedings
of the 45th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics & Materials Conference.
American Institute of Aeronautics and Astronautics.
DOI:http://dx.doi.org/doi:10.2514/6.2004-1888

179. L. Perovich, P. Mothersill, and J. B. Farah. 2013.
Awakened apparel: embedded soft actuators for
expressive fashion and functional Garments. In
Proceedings of the 8th International Conference on
Tangible, Embedded and Embodied interaction (TEI
’14). ACM, New York, NY, USA, 77–80. DOI:
http://dx.doi.org/10.1145/2540930.2540958

180. H. Petroski. 2004. Engineering: deployable structures.
American Scientist 92, 2 (2004), 122–126.
http://www.jstor.org/stable/27858357

181. A. P. Pickles, K. L. Alderson, and K. E. Evans. 1996.
The effects of powder morphology on the processing of
auxetic polypropylene (PP of negative poisson’s ratio).
Polymer Engineering & Science 36, 5 (1996), 636–642.
DOI:http://dx.doi.org/10.1002/pen.10451

182. H. Pohl, P. Brandes, H. Ngo Quang, and M. Rohs. 2017.
Squeezeback: pneumatic compression for notifications.
In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA, 5318–5330. DOI:
http://dx.doi.org/10.1145/3025453.3025526

183. K. Potter, P. Weaver, A. A. Seman, and S. Shah. 2007.
Phenomena in the bifurcation of unsymmetric
composite plates. Composites Part A: Applied Science
and Manufacturing 38, 1 (2007), 100–106. DOI:
http://dx.doi.org/10.1016/j.compositesa.2006.01.017

184. K. D. Potter and P. M. Weaver. 2004. A concept for the
generation of out-of-plane distortion from tailored FRP
laminates. Composites Part A: Applied Science and
Manufacturing 35, 12 (2004), 1353–1361. DOI:
http://dx.doi.org/10.1016/j.compositesa.2004.06.022

185. K. Probst, T. Seifried, M. Haller, K. Yasu, M. Sugimoto,
and M. Inami. 2011. Move-it: interactive sticky notes
actuated by shape memory alloys. In CHI ’11 Extended
Abstracts on Human Factors in Computing Systems
(CHI EA ’11). ACM, New York, NY, USA, 1393–1398.
DOI:http://dx.doi.org/10.1145/1979742.1979780

http://dx.doi.org/10.1145/2807442.2807494
http://dx.doi.org/10.1109/TMECH.2012.2210239
http://dx.doi.org/10.1145/2508468.2514723
http://dx.doi.org/10.1145/2984511.2984520
http://dx.doi.org/10.1145/2540930.2540971
http://dx.doi.org/10.1145/2702123.2702326
http://dx.doi.org/10.1145/2851581.2890253
http://dx.doi.org/10.1106/V3YU-JR4G-MKJG-3VMF
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.324&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.324&rep=rep1&type=pdf
http://dx.doi.org/10.1126/science.287.5454.836
http://stacks.iop.org/0964-1726/23/i=9/a=094001
http://dx.doi.org/doi:10.2514/6.2004-1888
http://dx.doi.org/10.1145/2540930.2540958
http://www.jstor.org/stable/27858357
http://dx.doi.org/10.1002/pen.10451
http://dx.doi.org/10.1145/3025453.3025526
http://dx.doi.org/10.1016/j.compositesa.2006.01.017
http://dx.doi.org/10.1016/j.compositesa.2004.06.022
http://dx.doi.org/10.1145/1979742.1979780


186. I. P. S. Qamar. 2017. Development of 3D printed
vascular networks for repeated self-healing. Ph.D.
Dissertation. University of Bristol.

187. J. Qi and L. Buechley. 2012. Animating paper using
shape memory alloys. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’12). ACM, New York, NY, USA, 749–752. DOI:
http://dx.doi.org/10.1145/2207676.2207783

188. J. Qiu, J. Tani, D. Osanai, and Y. Urushiyama. 2001.
High-speed actuation of shape memory alloy. In
Proceedings of SPIE Smart Structures and Devices, Vol.
4235. 188–197. DOI:
http://dx.doi.org/10.1117/12.420858

189. A. Rafsanjani, A. Akbarzadeh, and D. Pasini. 2015.
Snapping mechanical metamaterials under tension.
Advanced Materials 27, 39 (2015), 5931–5935. DOI:
http://dx.doi.org/10.1002/adma.201502809

190. C. L. Randall, E. Gultepe, and D. H. Gracias. 2012.
Self-folding devices and materials for biomedical
applications. Trends in Biotechnology 30, 3 (2012),
138–146. DOI:
http://dx.doi.org/10.1016/j.tibtech.2011.06.013

191. M. K. Rasmussen, E. W. Pedersen, M. G. Petersen, and
K. Hornbæk. 2012. Shape-changing interfaces: a review
of the design space and open research questions. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). ACM, New
York, NY, USA, 735–744. DOI:
http://dx.doi.org/10.1145/2207676.2207781

192. N. Ravirala, A. Alderson, K.L. Alderson, and P.J.
Davies. 2005. Auxetic polypropylene films. Polymer
Engineering & Science 45, 4 (2005), 517–528. DOI:
http://dx.doi.org/10.1002/pen.20307

193. P. M. Reis. 2015. A perspective on the revival of
structural (in)stability with novel opportunities for
function: From buckliphobia to buckliphilia. Journal of
Applied Mechanics 82, 11 (2015), 111001.
http://dx.doi.org/10.1115/1.4031456

194. M. R. M. Rejab and W. J. Cantwell. 2013. The
mechanical behaviour of corrugated-core sandwich
panels. Composites Part B: Engineering 47 (2013),
267–277. DOI:
http://dx.doi.org/10.1016/j.compositesb.2012.10.031

195. M. L. Rivera, M. Moukperian, D. Ashbrook, J. Mankoff,
and S. E. Hudson. 2017. Stretching the bounds of 3D
printing with embedded textiles. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems (CHI ’17). ACM, New York, NY, USA,
497–508. DOI:
http://dx.doi.org/10.1145/3025453.3025460

196. E. T. Roche, R. Wohlfarth, J. T. B. Overvelde, N. V.
Vasilyev, F. A. Pigula, D. J. Mooney, K. Bertoldi, and
C. J. Walsh. 2014. A bioinspired soft actuated material.
Advanced Materials 26, 8 (2014), 1200–1206. DOI:
http://dx.doi.org/10.1002/adma.201304018

197. J. A. Rogers, T. Someya, and Y. Huang. 2010. Materials
and mechanics for stretchable electronics. Science 327,
5973 (2010), 1603–1607. DOI:
http://dx.doi.org/10.1126/science.1182383

198. A. Roudaut, A. Karnik, M. Löchtefeld, and S.
Subramanian. 2013. Morphees: toward high "shape
resolution" in self-actuated flexible mobile devices. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 593–602. DOI:
http://dx.doi.org/10.1145/2470654.2470738

199. D. R. Sahoo, K. Hornbæk, and S. Subramanian. 2016.
TableHop: an actuated fabric display using transparent
electrodes. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI ’16).
ACM, New York, NY, USA, 3767–3780. DOI:
http://dx.doi.org/10.1145/2858036.2858544

200. M. Salama, M. Lou, and H. Fang. 2000. Deployment of
inflatable space structures - a review of recent
developments. In Proceedings of the 41st Structures,
Structural Dynamics, and Materials Conference and
Exhibit. American Institute of Aeronautics and
Astronautics. DOI:
http://dx.doi.org/doi:10.2514/6.2000-1730

201. M. Sanami, N. Ravirala, K. Alderson, and A. Alderson.
2014. Auxetic materials for sports applications.
Procedia Engineering 72 (2014), 453–458. DOI:
http://dx.doi.org/10.1016/j.proeng.2014.06.079

202. H. Sareen, U. Umapathi, P. Shin, Y. Kakehi, J. Ou, H.
Ishii, and P. Maes. 2017. Printflatables: printing
human-scale, functional and dynamic inflatable objects.
In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA, 3669–3680. DOI:
http://dx.doi.org/10.1145/3025453.3025898

203. F. Scarpa. 2008. Auxetic materials for bioprostheses [In
the Spotlight]. IEEE Signal Processing Magazine 25, 5
(2008), 128–126. DOI:
http://dx.doi.org/10.1109/MSP.2008.926663

204. F. Scarpa, L. G. Ciffo, and J. R. Yates. 2004. Dynamic
properties of high structural integrity auxetic open cell
foam. Smart Materials and Structures 13, 1 (2004),
49–56. http://stacks.iop.org/0964-1726/13/i=1/a=006

205. F. Scarpa, M. R. Hassan, and M. Ruzzene. 2006.
Modeling and testing of shape memory alloy chiral
honeycomb structures. In Proceedings of SPIE Smart
Structures and Materials 2006: Active Materials:
Behavior and Mechanics, Vol. 6170. DOI:
http://dx.doi.org/10.1117/12.658441

206. F. Scarpa, P. Panayiotou, and G. Tomlinson. 2000.
Numerical and experimental uniaxial loading on
in-plane auxetic honeycombs. The Journal of Strain
Analysis for Engineering Design 35, 5 (2000), 383–388.
DOI:http://dx.doi.org/10.1243/0309324001514152

http://dx.doi.org/10.1145/2207676.2207783
http://dx.doi.org/10.1117/12.420858
http://dx.doi.org/10.1002/adma.201502809
http://dx.doi.org/10.1016/j.tibtech.2011.06.013
http://dx.doi.org/10.1145/2207676.2207781
http://dx.doi.org/10.1002/pen.20307
http://dx.doi.org/10.1115/1.4031456
http://dx.doi.org/10.1016/j.compositesb.2012.10.031
http://dx.doi.org/10.1145/3025453.3025460
http://dx.doi.org/10.1002/adma.201304018
http://dx.doi.org/10.1126/science.1182383
http://dx.doi.org/10.1145/2470654.2470738
http://dx.doi.org/10.1145/2858036.2858544
http://dx.doi.org/doi:10.2514/6.2000-1730
http://dx.doi.org/10.1016/j.proeng.2014.06.079
http://dx.doi.org/10.1145/3025453.3025898
http://dx.doi.org/10.1109/MSP.2008.926663
http://stacks.iop.org/0964-1726/13/i=1/a=006
http://dx.doi.org/10.1117/12.658441
http://dx.doi.org/10.1243/0309324001514152


207. F. Scarpa, P. Pastorino, A. Garelli, S. Patsias, and M.
Ruzzene. 2005. Auxetic compliant flexible PU foams:
static and dynamic properties. physica status solidi (b)
242, 3 (2005), 681–694. DOI:
http://dx.doi.org/10.1002/pssb.200460386

208. F. Scarpa, F. C. Smith, B. Chambers, and G. Burriesci.
2003. Mechanical and electromagnetic behaviour of
auxetic honeycomb structures. The Aeronautical Journal
107, 1069 (2003), 175–183.

209. M. Schenk and S. D. Guest. 2013. Geometry of
Miura-folded metamaterials. Proceedings of the
National Academy of Sciences 110, 9 (2013),
3276–3281. DOI:
http://dx.doi.org/10.1073/pnas.1217998110

210. M. Schenk, A. D. Viquerat, K. A. Seffen, and S. D.
Guest. 2014. Review of inflatable booms for deployable
space structures: packing and rigidization. Journal of
Spacecraft and Rockets 51, 3 (2014), 762–778. DOI:
http://dx.doi.org/10.2514/1.A32598

211. W. Seboldt, M. Klimke, M. Leipold, and N. Hanowski.
2001. European Sail Tower SPS concept. Acta
Astronautica 48 (2001), 785–792. DOI:
http://dx.doi.org/10.1016/S0094-5765(01)00046-7

212. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T.
Aida, K. Hata, and T. Someya. 2009. Stretchable
active-matrix organic light-emitting diode display using
printable elastic conductors. Nature Materials 8, 6
(2009), 494–499. http://dx.doi.org/10.1038/nmat2459

213. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida,
and T. Someya. 2008. A rubberlike stretchable active
matrix using elastic conductors. Science 321, 5895
(2008), 1468–1472. DOI:
http://dx.doi.org/10.1126/science.1160309

214. D. Y. Seong, C. G. Jung, D. Y. Yang, K. J. Moon, and
D. G. Ahn. 2010. Quasi-isotropic bending responses of
metallic sandwich plates with bi-directionally
corrugated cores. Materials & Design 31, 6 (2010),
2804–2812. DOI:
http://dx.doi.org/10.1016/j.matdes.2010.01.009

215. S. Shan, S. H. Kang, J. R. Raney, P. Wang, L. Fang, F.
Candido, J. A. Lewis, and K. Bertoldi. 2015. Multistable
architected materials for trapping elastic strain energy.
Advanced Materials 27, 29 (2015), 4296–4301. DOI:
http://dx.doi.org/10.1002/adma.201501708

216. R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A.A.
Stokes, A. D. Mazzeo, X. Chen, M. Wang, and G. M.
Whitesides. 2011. Multigait soft robot. Proceedings of
the National Academy of Sciences 108, 51 (2011),
20400–20403. DOI:
http://dx.doi.org/10.1073/pnas.1116564108

217. J. Shim, C. Perdigou, E.R. Chen, K. Bertoldi, and P.M.
Reis. 2012. Buckling-induced encapsulation of
structured elastic shells under pressure. Proceedings of
the National Academy of Sciences 109, 16 (2012),

5978–5983. DOI:
http://dx.doi.org/10.1073/pnas.1115674109

218. A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo,
and G. M. Whitesides. 2010. Foldable printed circuit
boards on paper substrates. Advanced Functional
Materials 20, 1 (2010), 28–35. DOI:
http://dx.doi.org/10.1002/adfm.200901363

219. J. L. Silverberg, A. A. Evans, L. McLeod, R. C.
Hayward, T. Hull, C. D. Santangelo, and I. Cohen. 2014.
Using origami design principles to fold reprogrammable
mechanical metamaterials. Science 345, 6197 (2014),
647–650. DOI:
http://dx.doi.org/10.1126/science.1252876

220. A. Simpson, N. Coulombe, J. Jacob, and S. Smith. 2005.
Morphing of inflatable wings. In Proceedings of the
46th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference.
American Institute of Aeronautics and Astronautics.
DOI:http://dx.doi.org/doi:10.2514/6.2005-2110

221. T. L. Smith. 1978. Strength of elastomers. A perspective.
Rubber Chemistry and Technology 51, 2 (1978),
225–252. DOI:http://dx.doi.org/10.5254/1.3545831

222. W. M. Sokolowski and S. C. Tan. 2007. Advanced
self-deployable structures for space applications.
Journal of Spacecraft and Rockets 44, 4 (2007),
750–754. DOI:http://dx.doi.org/10.2514/1.22854

223. R. J. Spontak and N. P. Patel. 2000. Thermoplastic
elastomers: fundamentals and applications. Current
opinion in colloid & interface science 5, 5 (2000),
333–340. DOI:
http://dx.doi.org/10.1016/S1359-0294(00)00070-4

224. J. Steimle and S. Olberding. 2012. When mobile phones
expand into handheld tabletops. In CHI ’12 Extended
Abstracts on Human Factors in Computing Systems
(CHI EA ’12). ACM, New York, NY, USA, 271–280.
DOI:http://dx.doi.org/10.1145/2212776.2212805

225. A. Stevenson, C. Perez, and R. Vertegaal. 2011. An
inflatable hemispherical multi-touch display. In
Proceedings of the Fifth International Conference on
Tangible, Embedded, and Embodied Interaction (TEI
’11). ACM, New York, NY, USA, 289–292. DOI:
http://dx.doi.org/10.1145/1935701.1935766

226. M. Straubel, J. Block, M. Sinapius, and C. Hühne. 2011.
Deployable composite booms for various Gossamer
Space structures. In Proceedings of the 52nd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference. American Institute
of Aeronautics and Astronautics. DOI:
http://dx.doi.org/doi:10.2514/6.2011-2023

227. L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H.
Purnawali, and C. Tang. 2012. Stimulus-responsive
shape memory materials: a review. Materials & Design
33 (2012), 577–640. DOI:
http://dx.doi.org/10.1016/j.matdes.2011.04.065

http://dx.doi.org/10.1002/pssb.200460386
http://dx.doi.org/10.1073/pnas.1217998110
http://dx.doi.org/10.2514/1.A32598
http://dx.doi.org/10.1016/S0094-5765(01)00046-7
http://dx.doi.org/10.1038/nmat2459
http://dx.doi.org/10.1126/science.1160309
http://dx.doi.org/10.1016/j.matdes.2010.01.009
http://dx.doi.org/10.1002/adma.201501708
http://dx.doi.org/10.1073/pnas.1116564108
http://dx.doi.org/10.1073/pnas.1115674109
http://dx.doi.org/10.1002/adfm.200901363
http://dx.doi.org/10.1126/science.1252876
http://dx.doi.org/doi:10.2514/6.2005-2110
http://dx.doi.org/10.5254/1.3545831
http://dx.doi.org/10.2514/1.22854
http://dx.doi.org/10.1016/S1359-0294(00)00070-4
http://dx.doi.org/10.1145/2212776.2212805
http://dx.doi.org/10.1145/1935701.1935766
http://dx.doi.org/doi:10.2514/6.2011-2023
http://dx.doi.org/10.1016/j.matdes.2011.04.065


228. S. Sundaram, D. S. Kim, M. A. Baldo, R. C. Hayward,
and W. Matusik. 2017. 3D-printed self-folding
electronics. ACS Applied Materials & Interfaces 9, 37
(2017), 32290–32298. DOI:
http://dx.doi.org/10.1021/acsami.7b10443

229. Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner. 1999.
Mechanics of rollable and foldable film-on-foil
electronics. Applied Physics Letters 74, 8 (1999),
1177–1179. DOI:http://dx.doi.org/10.1063/1.123478

230. T. Tachi. 2016. Rigid-foldable thick origami. In Origami
5 (1 ed.), P. Wang-Iverson, R. J. Lang, and M. Yim
(Eds.). A K Peters/CRC Press, 253–263. DOI:
http://dx.doi.org/doi:10.1201/b10971-24

231. Y. Tadesse, N. Thayer, and S. Priya. 2010. Tailoring the
response time of shape memory alloy wires through
active cooling and pre-stress. Journal of Intelligent
Material Systems and Structures 21, 1 (2010), 19–40.
DOI:http://dx.doi.org/10.1177/1045389X09352814

232. M. Tamai, Z. Wang, G. Rajagopalan, H. Hu, and G. He.
2007. Aerodynamic performance of a corrugated
dragonfly airfoil compared with smooth airfoils at low
reynolds numbers. In Proceedings of the 45th AIAA
Aerospace Sciences Meeting and Exhibit. American
Institute of Aeronautics and Astronautics. DOI:
http://dx.doi.org/doi:10.2514/6.2007-483

233. T. Tamura, T. Yoshimura, M. Sekine, M. Uchida, and O.
Tanaka. 2009. A wearable airbag to prevent fall injuries.
IEEE Transactions on Information Technology in
Biomedicine 13, 6 (2009), 910–914. DOI:
http://dx.doi.org/10.1109/TITB.2009.2033673

234. H. Tanaka, H. Yamaguchi, and H. Tamai. 1997.
Treatment of orthostatic intolerance with inflatable
abdominal band. The Lancet 349, 9046 (1997), 175.
DOI:http://dx.doi.org/10.1016/S0140-6736(97)24003-1

235. T. Theodoros and A. Chronis. 2013. Choreographic
architecture: inscribing instructions in an auxetic based
material system. In Proceedings of the Symposium on
Simulation for Architecture & Urban Design (SimAUD
’13). Society for Computer Simulation International, San
Diego, CA, USA, Article 14, 8 pages.
http://dl.acm.org/citation.cfm?id=2500004.2500018

236. C. Thill, J. Etches, I. Bond, K. Potter, and P. Weaver.
2008. Morphing skins. The Aeronautical Journal 112,
1129 (2008), 117–139. DOI:
http://dx.doi.org/10.1017/S0001924000002062

237. C. Thill, J. A. Etches, I. P. Bond, K. D. Potter, and P. M.
Weaver. 2010. Composite corrugated structures for
morphing wing skin applications. Smart Materials and
Structures 19, 12 (2010), 124009.
http://stacks.iop.org/0964-1726/19/i=12/a=124009

238. G. A. A. Thuwis, M. M. Abdalla, and Z. Gürdal. 2010.
Optimization of a variable-stiffness skin for morphing
high-lift devices. Smart Materials and Structures 19, 12
(2010), 124010.
http://stacks.iop.org/0964-1726/19/i=12/a=124010

239. G. Tibert. 2002. Deployable tensegrity structures for
space applications. Ph.D. Dissertation. Royal Institute
of Technology.

240. S. Tipping and B. Stojadinovic. 2008. Innovative
corrugated steel shear walls for multi-story residential
buildings. In The 14th World Conference on Earthquake
Engineering. 12–17. http://www.iitk.ac.in/nicee/wcee/
article/14_05-06-0105.PDF

241. M. T. Tolley, S. M. Felton, S. Miyashita, D. Aukes, D.
Rus, and R. J. Wood. 2014a. Self-folding origami: shape
memory composites activated by uniform heating.
Smart Materials and Structures 23, 9 (2014), 094006.
http://stacks.iop.org/0964-1726/23/i=9/a=094006

242. M. T. Tolley, R. F. Shepherd, B. Mosadegh, K. C.
Galloway, M. Wehner, M. Karpelson, R. J. Wood, and
G. M. Whitesides. 2014b. A resilient, untethered soft
robot. Soft Robotics 1, 3 (2014), 213–223. DOI:
http://dx.doi.org/10.1089/soro.2014.0008

243. M. Vázquez, E. Brockmeyer, R. Desai, C. Harrison, and
S. E. Hudson. 2015. 3D printing pneumatic device
controls with variable activation force capabilities. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 1295–1304. DOI:
http://dx.doi.org/10.1145/2702123.2702569

244. S Vidoli and C Maurini. 2008. Tristability of thin
orthotropic shells with uniform initial curvature.
Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 464,
2099 (2008), 2949–2966. DOI:
http://dx.doi.org/10.1098/rspa.2008.0094

245. M. Wehner, M. T. Tolley, Y. Mengüç, Y.-L. Park, A.
Mozeika, Y. Ding, C. Onal, R. F. Shepherd, G. M.
Whitesides, and R. J. Wood. 2014. Pneumatic energy
sources for autonomous and wearable soft robotics. Soft
Robotics 1, 4 (2014), 263–274. DOI:
http://dx.doi.org/10.1089/soro.2014.0018

246. M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh,
G. M. Whitesides, J. A. Lewis, and R. J. Wood. 2016.
An integrated design and fabrication strategy for entirely
soft, autonomous robots. Nature 536 (2016), 451–455.
DOI:http://dx.doi.org/10.1038/nature19100

247. M. Weigel, T. Lu, G. Bailly, A. Oulasvirta, C. Majidi,
and J. Steimle. 2015. iSkin: flexible, stretchable and
visually customizable on-body touch sensors for mobile
computing. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 2991–3000.
DOI:http://dx.doi.org/10.1145/2702123.2702391

248. M. Wessely, T. Tsandilas, and W. E. Mackay. 2016.
Stretchis: fabricating highly stretchable user interfaces.
In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 697–704. DOI:
http://dx.doi.org/10.1145/2984511.2984521

http://dx.doi.org/10.1021/acsami.7b10443
http://dx.doi.org/10.1063/1.123478
http://dx.doi.org/doi:10.1201/b10971-24
http://dx.doi.org/10.1177/1045389X09352814
http://dx.doi.org/doi:10.2514/6.2007-483
http://dx.doi.org/10.1109/TITB.2009.2033673
http://dx.doi.org/10.1016/S0140-6736(97)24003-1
http://dl.acm.org/citation.cfm?id=2500004.2500018
http://dx.doi.org/10.1017/S0001924000002062
http://stacks.iop.org/0964-1726/19/i=12/a=124009
http://stacks.iop.org/0964-1726/19/i=12/a=124010
http://www.iitk.ac.in/nicee/wcee/article/14_05-06-0105.PDF
http://www.iitk.ac.in/nicee/wcee/article/14_05-06-0105.PDF
http://stacks.iop.org/0964-1726/23/i=9/a=094006
http://dx.doi.org/10.1089/soro.2014.0008
http://dx.doi.org/10.1145/2702123.2702569
http://dx.doi.org/10.1098/rspa.2008.0094
http://dx.doi.org/10.1089/soro.2014.0018
http://dx.doi.org/10.1038/nature19100
http://dx.doi.org/10.1145/2702123.2702391
http://dx.doi.org/10.1145/2984511.2984521


249. L. Wilson, S. Pellegrino, and R. Danner. 2013. Origami
sunshield concepts for space telescopes. In Proceedings
of the 54th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference.
American Institute of Aeronautics and Astronautics.
DOI:http://dx.doi.org/doi:10.2514/6.2013-1594

250. C. Wischke and A. Lendlein. 2010. Shape-memory
polymers as drug carriers—A multifunctional system.
Pharmaceutical Research 27, 4 (2010), 527–529. DOI:
http://dx.doi.org/10.1007/s11095-010-0062-5

251. W. Wu and Z. You. 2011. A solution for folding rigid
tall shopping bags. Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering
Sciences 467 (2011). Issue 2133. DOI:
http://dx.doi.org/10.1098/rspa.2011.0120

252. H. Xianyu, T.-H. Lin, and S.-T. Wu. 2006. Rollable
multicolor display using electrically induced blueshift of
a cholesteric reactive mesogen mixture. Applied Physics
Letters 89, 9 (2006), 091124. DOI:
http://dx.doi.org/10.1063/1.2345597

253. X. Xiao, T. Xie, and Y.-T. Cheng. 2010. Self-healable
graphene polymer composites. Journal of Materials
Chemistry 20 (2010), 3508–3514. Issue 17. DOI:
http://dx.doi.org/10.1039/C0JM00307G

254. T. Xie. 2010. Tunable polymer multi-shape memory
effect. Nature 464, 7286 (2010), 267–270.
http://dx.doi.org/10.1038/nature08863

255. T. Xie. 2011. Recent advances in polymer shape
memory. Polymer 52, 22 (2011), 4985–5000. DOI:
http://dx.doi.org/10.1016/j.polymer.2011.08.003

256. T. Xie and I. A. Rousseau. 2009. Facile tailoring of
thermal transition temperatures of epoxy shape memory
polymers. Polymer 50, 8 (2009), 1852–1856. DOI:
http://dx.doi.org/10.1016/j.polymer.2009.02.035

257. C. M. Yakacki, R. Shandas, D. Safranski, A. M. Ortega,
K. Sassaman, and K. Gall. 2008. Strong, tailored,
biocompatible shape-memory polymer networks.
Advanced functional materials 18, 16 (2008),
2428–2435. DOI:
http://dx.doi.org/10.1002/adfm.200701049

258. B. Yang, W. M. Huang, C. Li, and L. Li. 2006. Effects
of moisture on the thermomechanical properties of a
polyurethane shape memory polymer. Polymer 47, 4
(2006), 1348–1356. DOI:
http://dx.doi.org/10.1016/j.polymer.2005.12.051

259. C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M.
Xiong, and B. Gao. 2011. Silver nanowires: from

scalable synthesis to recyclable foldable electronics.
Advanced Materials 23, 27 (2011), 3052–3056. DOI:
http://dx.doi.org/10.1002/adma.201100530

260. L. Yang, O. Harrysson, H. West, and D. Cormier. 2015.
Mechanical properties of 3D re-entrant honeycomb
auxetic structures realized via additive manufacturing.
International Journal of Solids and Structures 69-70
(2015), 475–490. DOI:
http://dx.doi.org/10.1016/j.ijsolstr.2015.05.005

261. W. Yang, Z.-M. Li, W. Shi, B.-H. Xie, and M.-B. Yang.
2004. Review on auxetic materials. Journal of Materials
Science 39, 10 (2004), 3269–3279. DOI:
http://dx.doi.org/10.1023/B:JMSC.0000026928.93231.e0

262. L. Yao, R. Niiyama, J. Ou, S. Follmer, C. Della Silva,
and H. Ishii. 2013. PneUI: pneumatically actuated soft
composite materials for shape changing interfaces. In
Proceedings of the 26th Annual ACM Symposium on
User Interface Software and Technology (UIST ’13).
ACM, New York, NY, USA, 13–22. DOI:
http://dx.doi.org/10.1145/2501988.2502037

263. W. Yaqun, W. Y. San, and L. H. Tong. 2009.
Development issues and proposed therapeutic seat
framework. In Proceedings of the 3rd International
Convention on Rehabilitation Engineering & Assistive
Technology (i-CREATe ’09). ACM, New York, NY,
USA, Article 8, 4 pages. DOI:
http://dx.doi.org/10.1145/1592700.1592709

264. A. Yeganeh-Haeri, D. J. Weidner, and J. B. Parise. 1992.
Elasticity of α-cristobalite: a silicon dioxide with a
negative Poisson’s ratio. Science 257, 5070 (1992),
650–652. DOI:
http://dx.doi.org/10.1126/science.257.5070.650

265. T. Yokozeki, A. Sugiura, and Y. Hirano. 2014.
Development of variable camber morphing airfoil using
corrugated structure. Journal of Aircraft 51, 3 (2014),
1023–1029. DOI:http://dx.doi.org/10.2514/1.C032573

266. T. Yokozeki, S. Takeda, T. Ogasawara, and T. Ishikawa.
2006. Mechanical properties of corrugated composites
for candidate materials of flexible wing structures.
Composites Part A: Applied Science and Manufacturing
37, 10 (2006), 1578 – 1586. DOI:
http://dx.doi.org/10.1016/j.compositesa.2005.10.015

267. Y. Zhou, S. Sueda, W. Matusik, and A. Shamir. 2014.
Boxelization: folding 3D objects into boxes. ACM
Transactions on Graphics 33, 4, Article 71 (July 2014),
8 pages. DOI:
http://dx.doi.org/10.1145/2601097.2601173

http://dx.doi.org/doi:10.2514/6.2013-1594
http://dx.doi.org/10.1007/s11095-010-0062-5
http://dx.doi.org/10.1098/rspa.2011.0120
http://dx.doi.org/10.1063/1.2345597
http://dx.doi.org/10.1039/C0JM00307G
http://dx.doi.org/10.1038/nature08863
http://dx.doi.org/10.1016/j.polymer.2011.08.003
http://dx.doi.org/10.1016/j.polymer.2009.02.035
http://dx.doi.org/10.1002/adfm.200701049
http://dx.doi.org/10.1016/j.polymer.2005.12.051
http://dx.doi.org/10.1002/adma.201100530
http://dx.doi.org/10.1016/j.ijsolstr.2015.05.005
http://dx.doi.org/10.1023/B:JMSC.0000026928.93231.e0
http://dx.doi.org/10.1145/2501988.2502037
http://dx.doi.org/10.1145/1592700.1592709
http://dx.doi.org/10.1126/science.257.5070.650
http://dx.doi.org/10.2514/1.C032573
http://dx.doi.org/10.1016/j.compositesa.2005.10.015
http://dx.doi.org/10.1145/2601097.2601173

	Introduction
	Review of Shape-Changing Mechanisms
	Stretchable Structures
	Elastomers
	Auxetic Materials

	Deployable Structures
	Rollable Structures
	Foldable Structures
	Inflatable Structures

	Variable Stiffness Materials
	Anisotropic Structures
	Multi-stable Structures

	Shape Memory Materials
	Shape Memory Alloys
	Shape Memory Polymers


	Bridging the Gap
	Conclusion
	Acknowledgements
	References 

